Code No. : 15359 N/O

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. (E.E.E.) V-Semester Main & Backlog Examinations, Jan./Feb.-2024

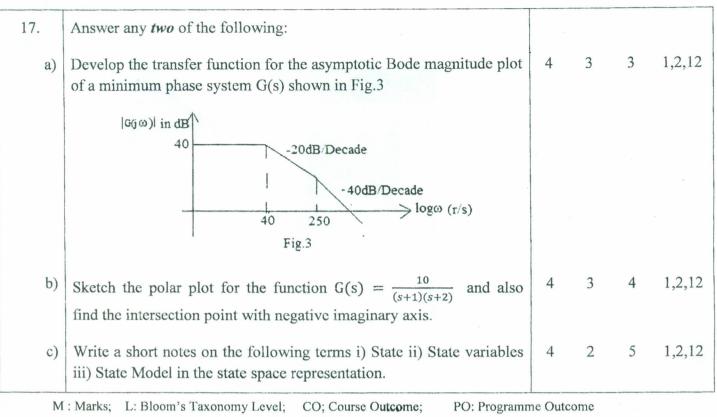
Control Systems

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Part-A (1	0×	2 =	20	Marks)
-----------	----	-----	----	--------


Q. No.	Stem of the question	M	L	СО	PO
1.	A unity feedback control system has an impulse response of $c(t) = e^{-2t}u(t)$ then determine the open loop transfer function.	2	2	1	1,2,12
2.	List the various components of control systems.	2	1	1	1,2,12
3.	The open loop transfer function of a unity feedback control system is $G(s) = \frac{10(s+2)}{s^2(s+1)}$. Determine i)Type of system ii) Static error constants		1	2	1,2,12
4.	A servo system has a periodic oscillation time of 0.4 seconds and its first overshoot is 25%. Determine the settling time if the allowable tolerance limits are $\pm 5\%$.		2	2	1,2,12
5.	Define the terms i) Resonant peak ii) Resonant frequency for the second order system.		1	3	1,2,12
6.	Draw the approximate bode plot for a finite pole on the negative real axis i.e., $G(s) = \frac{1}{1+s\tau}$	2	1	3	1,2,12
7.	State the principle of argument in Nyquist stability criterion.		1	4	1,2,12
8.	What are the advantages of frequency response analysis?		1	4	1,2,12
9.	Mention the properties of state transition matrix		1	5	1,2,12
10.	Enumerate the differences between state space approach over transfer function model.	2	1	5	1,2,12
	Part-B ($5 \times 8 = 40$ Marks)	2.5			
11. a)	Distinguish between open loop & closed loop control systems with examples.	4	2	1	1,2,12
b)	Draw the electrical analogous circuits for the mechanical translational system shown in Fig.1	4	3	1	1,2,12
	$ \begin{array}{c} K \\ \hline \\$				

:: 2 ::

Code No. : 15359 N/O

					1
12. a)	By using R-H criteria, Determine the location of roots on the s-plane and hence the stability for the system represented by the characteristic equation $s^5 + 4s^4 + 8s^3 + 8s^2 + 7s + 4 = 0$	4	4	2	1,2,12
b)	Determine the Centroid & Angle of departure/arrival for the open loop transfer function $G(s) = \frac{k(s+9)}{s(s^2+4s+11)}$ in the root locus method.	4	3	2	1,2,12
13. a)	Describe the necessity of lead compensator and also draw its frequency response	4	2	3	1,2,12
b)	Find the gain crossover frequency & phase margin for the open loop transfer function $G(s) = \frac{2\sqrt{3}}{s(s+1)}$.	4	3	3	1,2,12
14. a)	Illustrate the procedure to determine the gain & phase margin from polar plot with a neat sketch.	3	2	4	1,2,12
b)	Sketch the Nyquist plot for the function $G(s)H(s) = \frac{1}{s(s+1)}$	5	3	4	1,2,12
15. a)	Construct state model matrix for the given transfer function $\frac{Y(s)}{U(s)} = \frac{10(s+4)}{s(s+1)(s+3)}$, Where Y(s) & U(s) are Output & Input respectively	4	3	5	1,2,12
b)	A single input and single output linear time invariant system is described by the following matrices	4	2	5	1,2,12
	$A = \begin{bmatrix} -5 & 1 & 0 \\ 0 & -2 & 1 \\ 20 & -10 & 1 \end{bmatrix}; B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}; C = \begin{bmatrix} -1 & 1 & 0 \end{bmatrix}.$				nool (s nool (s
1.12	Check the Controllability and Observability of the above matrices.				- Battler
16. a)	Draw the signal flow graph to evaluate the closed loop transfer function of a system whose block diagram is shown in Fig.2	5	4	1	1,2,12
	$R(s) \xrightarrow{H_1} G_1 \xrightarrow{G_2} \xrightarrow{+} C(s)$ $H_1 \xrightarrow{G_4} H_2 \xrightarrow{G_4} Fig.2$				
b)	Discuss the effect on the performance of a second order control system with PID controller	3	2	2	1,2,12

Contd... 3

Diooni 5 1a.	konomy Level, CO, Course Outoonie,	1 O. I rogramme Outcome
i)	Blooms Taxonomy Level – 1	20%
ii)	Blooms Taxonomy Level – 2	32.5%
iii)	Blooms Taxonomy Level – 3 & 4	47.5%

:: 3 ::